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We introduce a new implicit Monte Carlo technique for solving time dependent radiation 
transport problems involving spontaneous emission. In the usual implicit Monte Carlo proce- 
dure an effective scattering term in dictated by the requirement of self-consistency between the 
transport and implicitly dilferenced atomic populations equations. The effective scattering 
term, a source of inefficiency for optically thick problems, becomes an impasse for problems 
with gain where its sign is negative. In our new technique the effective scattering term does 
not occur and the execution time for the Monte Carlo portion of the algorithm is independent 
of opacity. We compare the performance and accuracy of the new symbolic implicit Monte 
Carlo technique to the usual effective scattering technique for the time dependent description 
of a two-level system in slab geometry. We also examine the possibility of effectively exploiting 
multiprocessors on the algorithm, obtaining supercomputer performance using shared 
memory multiprocessors based on cheap commodity microprocessor technology. 0 1989 

Academic Press, Inc. 

1. INTRODUCTION 

The implicit Monte Carlo (IMC) technique for solving time dependent radiation 
transport was introduced in [ 1 ] for transport and material energy equations under 
LTE conditions and was extended to the case of non-LTE line transport in [2]. In 
this technique, the formal solution of the material energy or atomic population 
equations is substituted into the spontaneous emission term of the transport equa- 
tion to obtain a consistent set of decoupled equations. This leads to an effective 
scattering term in the resulting transport equation. For optically thick media the 
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effective scattering term dominates the Monte Carlo solution of the transport equa- 
tion, causing the execution time to diverge as the optical thickness of the media is 
increased. Although the IMC technique is robust for problems of high opacity, its 
application to them is limited in practice due to the large amount of computer time 
consumed by the effective scattering process. 

For line transport problems, where it is physically possible to have gain in the 
line, the situation can be worse than a simple loss of efficiency. When the problem 
crosses into the gain regime the effective scattering coefficient becomes negative. 
This can be handled, in principle, by introducing negative weight photon bundles. 
The distance to a scattering event is computed using the absolute value of the scat- 
tering coefficient, but just what happens at the scattering event depends upon the 
sign of the coefficient. If the sign is positive a normal scattering event occurs. If the 
sign is negative the weight of the incident bundle is doubled and a new bundle, with 
a negative weight equal in magnitude to the weight of the incident bundle, is 
generated to travel in the scattered direction. Using negative weight bundles results 
in poor statistical accuracy due to the subtractions occurring in the photon 
distribution. In addition to the poor statistical accuracy caused by subtractions, the net 
photon weight in a zone is no longer guaranteed to be positive. Such fluctuations 
can occur quite frequently in practice unless large sample sizes are used for the 
photon distribution. 

A new Monte Carlo technique, which would remove the effective scattering term 
from the Monte Carlo solution of the transport equation while maintaining the 
same level of robustness inherent in IMC, would be a significant advance in the use 
of Monte Carlo to solve time dependent transport problems. With the effective scat- 
tering term gone, the computer time required for the Monte Carlo portion of the 
algorithm would be independent of optical thickness. The new technique would 
extend the practical application of Monte Carlo to very thick problems where IMC 
is currently a robust but inefficient method to solve time dependent transport 
problems. This is not the first attempt to improve the efficiency of implicit Monte 
Carlo for optically thick problems. A random walk procedure [3] which can be 
used for problems in LTE has been developed. Random walk is an approximation 
to the real solution of the transport equation that offers a limited performance 
increase over the standard IMC technique. We consider here a new implicit Monte 
Carlo technique, called symbolic implicit Monte Carlo (SIMC) for reasons 
explained below, which does not require any approximation in the solution of the 
transport equation to improve efficiency for optically thick problems. Our new 
technique is faster than IMC for optically thin systems as long as the Monte Carlo 
portion of the algorithm dominates the computation time. For optically thick 
systems the new technique maintains a computation time that is essentially 
independent of opacity. 

The key to the new method is in realizing that you can track photon bundles and 
record their histories without knowing their weights. In the Monte Carlo used to 
provide an estimate of the radiation field all decisions regarding the disposition of 
a photon bundle are independent of its weight and this allows us to track and score 
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bundles with unknown weights. The spontaneous emission term in the transport 
equation can be treated implicitly, with respect to the atomic populations, by 
emitting bundles with unknown or symbolic weights that depend on the forward 
different atomic populations. Once the time histories of the bundles are known the 
spatially coupled equations governing the atomic populations may be solved. With 
the atomic populations computed the numeric weights of the symbolic photon 
bundles can be assigned. This process is repeated for each time step resulting in a 
robust time dependent solution of the coupled transport and atomic population 
equations. 

The resulting computational method is as robust and accurate as the standard 
IMC technique and offers a startling speed improvement for optically thick 
problems. It may also be applied to line transport problems involving gain due to 
the absence of the effective scattering term. For problems without gain we have 
found the SIMC technique, like the tradiational IMC technique, to be uncondi- 
tionally stable in practice. In the case of problems with gain we have found, again 
through practical numerical calculations, that one must limit the time step size to 
control instabilities generated by the stimulated emission term. The reasons for 
apparent stability in problems without gain and conditional stability for problems 
with gain are not clearly understood and remain an open issue. 

In this paper we will consider the applications of the SIMC technique to a two- 
level line transport problem in slab geometry. The problem being considered is the 
same one considered in [2] and we compare both the accuracy and speed of the 
new algorithm with the one of the previous paper. The outline of the paper is as 
follows. In Section 2 we discuss the problem to be solved and the differencing 
scheme used in the numerical solution of the equation governing the atomic 
populations. This is essentially the same as in [2], except that the formal solution 
of the atomic populations is not substituted into the transport equation to generate 
an effective scattering term. In Section 3 we describe the SIMC technique, the heart 
of which is the tracking of photon bundles with symbolic weights. The linear system 
that must be solved to obtain the atomic population fractions is also discussed in 
this section. In Section 4 we consider a simple line trapping problem. We show that 
SIMC and IMC deliver equivalent results for sufficiently small time step sizes and 
that SIMC has slightly less overshoot for large time step sizes. In Section 5 we 
consider the execution speeds of both IMC and SIMC as the optical thickness of 
the problem is increased. The SIMC technique is faster than the IMC technique for 
optically thin problems as long as the Monte Carlo dominates the execution time. 
As the opacity is increased, the execution time for the IMC diverges while the 
execution time for SIMC remains essentially constant. In Section 6 we turn to the 
topic of multiprocessing the SIMC algorithm. We obtain supercomputer perfor- 
mance using a shared memory multiprocessor based on cheap commodity 
microprocessor technology. We end with a discussion in Section 7. 



436 EUGENED.BROOKSIII 

2. THE MATHEMATICAL METHOD 

As a test bed for the symbolic IMC technique, consider a two-level system 
including collisional, or external, pumping between the atomic levels. We will 
consider the system in l-dimensional slab geometry. No further complications arise 
in higher dimensions except that the number of zones, and therefore the size of the 
linear system which occurs in SIMC, can rapidly get out of hand. The transport 
equation or such a system in slab geometry is 

(2.1) 

where c is the speed of light, x is the position in the slab, p is the direction cosine 
of the radiation, v is the frequency of the radiation, f(,u, v, x, t) is the photon 
number density distribution per unit atom density, n,(x, t) is the upper level atomic 
population fraction, n,(x, t) is the lower level atomic population fraction, A,, is the 
spontaneous emission rate, b(v) is the line shape function normalized to unit 
integral and Kiz = rcN, where K is the lower state absorption cross section and N is 
the atom number density. The coefficient K,, is defined by 

(2.2) 

where g, and g, are the usual statistical weight factors for levels 1 and 2. As in [2], 
we consider the problem in the regime of complete redistribution and no physical 
scattering of.photons. The accomodation of a physical scattering term is trivial, the 
generalization to partial redistribution and multi-line problems, for which the 
SIMC technique is essential, will be dealt with in a future paper. 

The equations governing the atomic population fractions n, and n, are 

and 

n,+n*=l, (2.4) 

where C,, and C,, are rate constants for the collisional transitions 1 -P 2 and 2 + 1, 
respectively. One must add to the above equations suitable boundary conditions, 
for instance, a specification of the inwardly directed f on the left and right edges of 
the finite slab of thickness 1 in which our problem is defined and the values off and 
the atomic population fractions inside the slab at time t = 0. 

Using (2.4) one can rewrite (2.1) and (2.3) as 
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and 

dn 

1 
X s I & OD dv 4(v) fb, v), 

-1 0 
(2.6) 

respectively, where n is the upper level population fraction. 
The scheme for generating a finite difference solution to (2.6) is the same one 

used in the standard IMC technique [2]. We integrate (2.6) from to to to + At, 
approximating n(t) by n(to + At) in the spontaneous emission and collision terms 
and by n(t,) in the absorption term, obtaining 

n(t,+ At)=n(t,)+ [C12-- (Cl2 + G +&l) n(fo + 41 At 
+ CCL - (G + KJ n(to)l 

The reader will note that up to this point we have not done anything different 
that what was done in [2] to generate a prescription to compute n(t, + At) given 
n(to) and the time integral of the photon distribution over the time interval from 
to to to + At. It is at this point that we do something radically different. 

3. THE SYMBOLIC IMPLICIT MONTE CARLO TECHNIQUE 

In order to use the prescription (2.7) to advance the atomic populations one time 
step we need the time integral of the photon distribution from to to to + At specified 
in the last term of (2.7). To be consistent with (2.7) in the treatment of the spon- 
taneous emission, our solution of (2.5) needs to use the forward differenced atomic 
fraction n(t, + At) in the spontaneous emission term as we integrate (2.5) across the 
time step. In the standard IMC technique, we substitute the formal solution for 
n(t, + At) into the spontaneous emission term of (2.5) and note that the resulting 
transport equation now contains an effective scattering term that can be dealt with 
via Monte Carlo. The Monte Carlo is run and the time integral of the photon 
distribution is used to compute n(t, + At). The problem with this approach is that 
the effective scattering term dominates the Monte Carlo for optically thick 
problems, resulting in rather long execution times. 

We would like to use Monte Carlo to provide a statistical estimate of the photon 
distribution without introducing an effective scattering term. At first sight, it seems 
impossible to create a Monte Carlo estimate for the integral of (2.5) without having 
n( to + At) in hand to assign weights to the spontaneously emitted photon bundles. 
It turns out to be quite trivial to accomplish once one notices that the decisions 
made in creating the time histories of the photon bundles do not depend on their 

581/83/Z-13 
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weights. Why not emit and track photon bundles with symbolic weights, that is 
weights that depend on the forward differenced atomic popultion fractions that 
have not yet been determined? By tracking the symbolic photon bundles, one 
creates a Monte Carlo estimate of the integral of the photon field which depends 
on the unknown forward differenced atomic population fractions. This estimate can 
now be used to solve (2.7) and results in a linear system in the atomic population 
fractions. The linear system can be solved and the atomic population fractions 
n(t, + At) can then be used to establish numeric values for the symbolic photon 
bundles. 

To implement the symbolic IMC algorithm for our test problem, a slab of 
thickness I, we divide the region up into nzone~ zones of equal thickness. The 
atomic population fractions are assumed to be constant, as a function of x, within 
each zone. The first step of the algorithm is to create the statistical estimate of the 
photon distribution J: There are three sources of photon bundles: the census 
bundles from the previous time step, any bundles generated at the boundary due to 
boundary conditions, and any bundles that are spontaneously emitted within a 
zone during the time step. The procedure for generating the frequency distributions 
of emitted bundles and tracking them is the same as in [2 3, except for the lack of 
effective scattering, so we will not describe it here. The difference with the procedure 
in [2] is that the spontaneously emitted bundles now have a symbolic weight, 
which is proportional to the unknown forward differenced atomic population 
fraction n(t, + At) in the zone from which they were emitted. The symbolic weight 
is adjusted in flight just as the numeric weights of the census and boundary bundles 
are, but the scoring of a bundle with a symbolic weight is handled differently. When 
a bundle with a numeric weight makes a track in a zone, the time integral of the 
weight of the bundle is added to a single memory location associated with the zone. 
When a bundle with a symbolic weight, which was spontaneously emitted in zone 
i, makes track in zone j the ith element of an array associated with zone j is 
incremented with the time integral of the symbolic weight of the bundle. To get the 
time integral of Sk1 & SF dv d(v)f(p, v) within a zone, one must add the numeric 
value, which comes from tracking census and boundary bundles, to the sum of 
symbolic values from spontaneously emitted bundles after they have been scaled by 
the forward differenced atomic population fractions of their birth zones. The 
prescription (2.7) for the atomic population fraction update becomes 

n(t,+ At),=n(to)i+ [Cl*- (Cl, + C,, +A,,) n(t, + At)i] At 

+ CCKI, - (&I + K,,) 4toM 

FN,+~FS,n(t,+At)j Vi, 
i Ii 

where FN, is the contribution to 

~dx~~~+d’dtj~,d~~~~dvB(v)f(li,x,v,f) 

(3.1) 

(3.2) 
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within zone i coming from bundles with numeric weights, FS&t, + LI~)~ is the 
contribution to the integral within zone i coming from bundles with symbolic 
weights that were born in zone j, n( t,)i is the upper level atomic population fraction 
in zone i at the start of the time step, n(t, + dt)i is the upper atomic population 
fraction in zone i at the end of the time step, and Vi is the thickness of zone i. 

Equation (3.1) specifies a linear system to be solved for the n( to + dt)i. The linear 
system is dense if the time step At is large enough to allow spontaneously emitted 
bundles from one zone to cross all the others. At first sight this seems like bad news 
as the solution of a linear system via Gauss elimination, for example, takes a time 
that grows like the cube of the dimension of the system, which in this case is the 
number of zones. It turns out that the matrix is strongly diagonally dominant and 
simple Jacobi iteration [4], using the atomic population fractions from the 
previous time step as a starting guess, does quite well with very few iterations 
required to obtain high accuracy solutions. Jacobi iteration gives a time for solution 
that scales like the number of zones squared and takes advantage of a good initial 
starting guess for the solution, the atomic population fractions from the previous 
time step. If the time step size is such that a symbolic bundle cannot cross too many 
zones during the time step, the linear system will be sparse and this can be 
exploited to good advantage in an iterative solver. 

In practice, the time to solve the linear system is small compared to the time for 
the Monte Carlo and we have not had to be very sophisticated with the linear 
system solver. For problems with 15,000 census bundles and up to 500 zones the 
linear system solve has remained a small portion of the total computation time even 
though Gauss elimination is being used. This is particularly true on a supercom- 
puter where the linear system solve is efficiently vectorized and the Monte Carlo is 
not. If we require the solution of problems with many thousands of zones we will 
clearly have to be more sophisticated with the linear system solve. Careful exploita- 
tion of sparseness and iterative techniques will make problems with large numbers 
of zones quite tractable. 

4. ACCURACY 

We have performed numerous high statistics runs comparing the standard IMC 
technique [2] to the symbolic IMC technique introduced here. For reasonable time 
step sizes, a time step size which is small when compared to the characteristic time 
scales occurring in a problem, IMC and SIMC provide the same time dependent 
results. The two techniques have been critically compared for a variety of problem 
parameters and no differences, other than slightly different overshoot characteristics 
for large time step sizes, have been found. The agreement between IMC and SIMC 
is not surprising; the two techniques use the same differencing scheme to solve the 
coupled transport and atomic population equations. The only difference is in how 
we accomplish the forward differencing of the spontaneous emission term for the 
transport equation. 
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FIG. 1. Slab optical thickness as a function of time for different values of the integration time step 

dt, for both IMC and SIMC. 

As noted above, IMC and SIMC exhibit slightly different overshoot charac- 
teristics for large time step sizes. This is caused by the extra approximation which 
is made when deriving the effective scattering term of IMC. This approximation, 
discussed in Section 2 of [2], does not have to be made in SIMC where there is no 
effective scattering term. To illustrate this difference for large time step sizes, we 
show in Fig. 1 the slab optical thickness as a function of time using both techniques 
in a simple line trapping problem. The physical problem parameters for these 
calculations are given in Table I. The slab was divided into 32 zones of equal size, 
the length units are chosen so that the slab has unit length and the time units are 
chosen so that the light travel time across the slab is unity. For a time step size of 
0.1 both IMC and SIMC give equivalent time dependent results. For a time step 
size of 1.0, which is quite large in comparison with the characteristic time scales in 
the problem, the SIMC technique ha8 less overshoot than IMC, but both SIMC 
and IMC give the same steady state solution. 

TABLE I 

Physical Problem Parameters for Fig. 1 

n(x, t =O) 0.25 
m v, x, f = 0) 0 

f(p>O, v,x=o, f) 0 
f(P<oO,v,x=l,r) 0 

K21 15.3422 
K,Z 15.3422 
A21 3.33564 
Cl2 0.245423 
c2, 0.667128 
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5. ALGORITHM PERFORMANCE 

We consider in this section how the execution times for IMC and SIMC compare 
as we vary the optical thickness of the problem. To do this we take the problem 
configuration of Section 4 and vary the optical thickness of the slab by choosing 
one of the values 0.1, 1, 10, 100, or 1000 for the coefficients Klz and Kzl. In Fig. 2 
we plot the resulting equilibrium slab optical thickness versus the execution time to 
evolve the problem to r = 20 using a time step size of 1.0. For an optically thin 
problem the SIMC algorithm is about 30% faster than the IMC algorithm 
(provided the Monte Carlo dominates the execution time as is the case here). This 
is caused by the simpler Monte Carlo of SIMC that contains no scattering terms, 
saving the work of computing the distance to next collision. As the opacity of 
the problem is increased the divergence of execution time for IMC is clear while 
the SIMC algorithm maintains a flat execution time. This striking improvement 
in the execution time, while maintaining the same level of robustness, makes 
SIMC the clear choice for optically thick problems. 

In Table II we show the execution times for SIMC on a sample problem, 20 time 
steps of the problem of Section 4, as the number of zones is changed. The timings 
in the column labeled scalar are execution times in seconds for a single processor 
on a Symmetry multiprocessor system, manufactured by Sequent Computer 
Systems Inc., using version 3.0.7 of their operating system. The Symmetry system 
was equipped with copy/back cache and the floating point accelerator option. The 
timings in the column labeled vector are execution times in seconds using a single 
processor of the Cray X-ii4P 4116, manufactured by Cray Research Inc. The code 

0 SMC 

Cl JMC 

a, 

a: O “““1o-i ‘1O0 ‘10’ ‘102 

Optical thickness 

FIG. 2. Execution time for IMC and SIMC as the optical thickness of the slab is increased. 
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TABLE II 

Execution Times for a Sample Problem as the Number 
of Zones is increased 

nzones Scalar Vector 

32 157.8 
(1.8) 

64 283.3 
(2.0) 

128 563.9 
(2.4) 

256 1367.8 
(3.5) 

512 4832.5 

(5.4) 
1024 26305.5 

17.21 

(1.7) 
28.89 
(1.8) 
52.12 

(1.9) 
99.48 

(2.0) 
197.26 

N.A. 

was compiled for the Cray using version 2.3 of the LLNL C/Civic hybrid compiler. 
The numbers in parentheses are the ratios of execution times as the number of 
zones in the problem is doubled. The linear system solve is efficiently vectorized on 
the Cray machine, reducing its relative costs as compared to the Monte Carlo by 
about a factor of 10. The same source program, coded in the C programming 
language, was used on both machines and identical numerical results were 
obtained. The 1024 zone problem could not be run on the Cray machine due to 
memory limitations, the operating system enforced an eight million word memory 
limit. 

Note that the ratio of execution times as the number of zones is doubled is 
slightly less than 2.0 for small numbers of zones on the scalar machine. This ratio 
rises to 3.5 as we double the number of zones from 256 to 512, and increases to 5.4 
as we double from 512 to 1024 zones. The ratio of slightly less than 2.0 for small 
numbers of zones results when the Monte Carlo dominates execution time. As the 
zone width is halved the number of tracks made by a bundle for a large time step 
size is doubled. When the execution time is dominated by the linear system solve, 
the use of Gauss elimination results in a ratio of 8 for the execution times as the 
number of zones is doubled. The ratio of execution times as we double the number 
of zones from 512 to 1024, running on the scalar machine, indicates that the linear 
system solve is beginning to dominate. This is confirmed by an execution profile 
indicating that 60% of the time was spent in the linear system solve for the 1024 
zone problem. 

For the vector machine the ratio of execution times, as we double the number of 
zones, remains below 2.0 in Table II. The point at which the linear system solve 
dominates the execution time is postponed to a larger number of zones by the 
efficient vectorization of the linear system solve. This point has not been moved 
very far away, a speed increase by a factor of 10 through vectorization is quickly 
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consumed by the growing cost of the linear system solve that increases by a factor 
of 8 each time we double the number of zones. 

6. PARALLEL PERFORMANCE 

Progress in the single processor performance of supercomputers has fallen into a 
rut in the recent decade with the scalar performance of these machines becoming 
almost static. The way out of this rut, which is gradually becoming generally 
accepted, is to use multiprocessing. It is interesting to consider whether multipro- 
cessing can be effectively applied to the SIMC algorithm. To answer this question 
the code used as the workhorse for this paper was recoded using PCP [S], a parallel 
extension of the C programming language which is portable to several shared 
memory multiprocessors. Computer codes written in PCP can be compiled into 
efficient serial code as well, using a special option of the PCP compiler. 

In the standard IMC algorithm the effective scattering term can cause the Monte 
Carlo to account for almost all of the problem run time, and as a result one only 
needs to consider multiprocessing the Monte Carlo algorithm. This is particularly 
true in an optically thick problem where effective scattering can raise the cost of the 
Monte Carlo by an order of magnitude or more. In the SIMC algorithm the Monte 
Carlo is not as costly and one must effectively multiprocess the Monte Carlo, the 
linear system solve and the gathering of data for edits in order to achieve good 
parallel performance. The result is a rather tightly coupled parallel algorithm for 
which microtasking [6,7] was found to be cumbersome and ineffective. The use of 
the PCP language, which was developed in part by the author to make multipro- 
cessing a code in a such a global manner more efficient, proved to be very effective 
and good parallel performance was achieved. Using the serial compilation option 
for the PCP compiler the code also runs efficiently on any machine with a standard 
C execution environment. 

In Fig. 3 we show the speedup, the execution time for one processor divided by 
the execution time for N processors, for the SIMC code as a function of the number 
of processor used on the Sequent Symmetry multiprocessor. The Sequent machine 
was equipped with 30 processors having copy/back caches and floating point 
accelerators. The single processor runs were performed using code compiled for 
parallel execution which included the overhead of concurrency control code. This 
overhead added about 4% to the single cpu execution times and could have been 
removed by compiling for serial execution. Most of the overhead is attributed to the 
locking of zones to increment the integral (3.2) within a zone as a photon bundle 
makes a track. 

As can be seen in Fig. 3 the parallel version of the SIMC code produces good 
speedup characteristics. A bus bandwidth limited speedup of 23.6 was obtained 
using 30 processors and detailed monitoring of the memory system indicated that 
most of the bus transactions were caused by simple cache spills. Increasing the per- 
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FIG. 3. The speedup of the parallel SIMC algorithm, as a function of the number of processors, for 
the Sequent Symmetry multiprocessor. 

processor cache size so that the problem data set could be distributed in the caches 
without spilling would have improved performance. 

When presenting speedup data for a parallel machine one is hiding what is 
probably the most important parameter, the absolute performance of the multipro- 
cessor. To pin this down the same code was compiled using the serial compilation 
option for PCP and run on the Cray X-MP 4/16, a well-known supercomputer. 
About 10 min of execution time was required on the X-MP and the startling result 
that the 30 processor Symmetry system outperformed the Cray machine by a factor 
of 2.8 was obtained. The Monte Carlo code was not vectorized, putting the X-MP 
at a considerable disadvantage, but the aggregate performance of a multiprocessor 
based on the same microprocessors now appearing in personal computers is 
startling. 

The same efficient parallel performance would probably be obtained using the 
Cray X-MP in multiprocessor mode, but the required PCP support does not yet 
exist for these machines. The cost of locking down a zone in order to score a bundle 
will be considerably higher on the Cray X-MP and will become a serious problem 
if the Monte Carlo is vectorized to improve performance. A vectorized test and set 
operation, using the addresses of zones for which lock attempts are to be made, 
would be very useful in reducing this overhead. 



SYMBOLIC IMPLICIT MONTE CARLO 445 

7. DISCUSSION 

We have developed a new technique, symbolic implicit Monte Carlo (SIMC), for 
the solution of radiation transport problems involving spontaneous emission. The 
new technique preserves the robustness of tradiational implicit Monte Carlo (IMC) 
while removing the effective scattering term which is a source of inefficiency for 
optically thick problems. We have demonstrated that the symbolic technique 
delivers the same results as traditional IMC, with slightly less overshoot for large 
time step sizes in a time dependent problem, and provides the same level of robust- 
ness. 

The SIMC technique is slightly faster than the IMC technique for optically thin 
problems and provides an execution time which is independent of opacity. This is 
a startling speed improvement for optically thick problems. In the symbolic 
technique we have traded the effective scattering term of the IMC technique for a 
linear system solve to obtain the atomic population fractions at the end of the time 
step. A linear system solve can consume a great deal of computer time for a large 
number of zones. As problem sizes grow, sophisticated techniques will have to be 
exploited to minimize the time spent in the linear system solver. We have shown 
that problems with up to 1000 zones can be addressed, using Gauss elimination 
which would be the worse case linear system solver, before one needs to worry 
about the performance of the linear system solve. There are several sophisticated 
iterative techniques that can be used on larger problems and we are currently 
evaluating their performance. 

In addition to introducing a new Monte Carlo algorithm, we have examined the 
possibility of effectively utilizing shared memory multiprocessors with modest 
numbers of processors on this type of code. The code had to be multiprocessed in 
a global sense, including the problem initialization, Monte Carlo, linear system 
solver, and the gathering of statistics for output, in order to achieve good parallel 
performance. Once the right programming model was found and used for the 
parallel version, the author was quite suprised at the ease with which a correctly 
running, efficient, and portable parallel version of the code was created. An 
implementation of the parallel version using microtasking was attempted but the 
resulting code was found to be cumbersome to maintain, inefficient, and lacking 
portability. A striking lesson learned in our multiprocessing studies is that the latest 
crop of cost effective shared memory multiprocessors, when effectively used to 
multiprocess a single job, are supercomputers if performance is the deciding 
criterion. 

This paper is intended only as a vehicle to introduce the SIMC technique and 
concerns itself with a simple, almost trivial, line transport application. The idea of 
using symbolic weights in a time dependent Monte Carlo can almost certainly be 
applied to the LTE transport problem of [ 11. The linear system solve of the 
transport case becomes a non-linear problem in the LTE case due to the T4 
dependence of spontaneous emission on the material temperature T. The SIMC 
technique was invented as a way around the problem of negative scattering coelIi- 
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cients which can arise in line transport IMC. Such negative coefficients arise when 
a line crosses into the gain regime for a simple two-level system and can arise in 
multiple line contexts even where no net gain is present in a line. We will publish 
the generalization of SIMC to multiple line problems in a future work. 

The symbolic implicit Monte Carlo technique will likely play an important role 
in time dependent NLTE and LTE transport calculations. Banishing the effective 
scattering term provides a startling speed increase on problems with high opacities 
and opens up the possibility of treating problems with multiple lines including gain. 
The notion of using Monte Carlo particles with symbolic weights is not entirely 
new, a similar mechanism is employed by Dunn to solve the inverse scattering 
problem in {S]. The notion of using Monte Carlo particles with symbolic weights, 
with their numerical values to be determined after the track histories are recorded, 
may prove to be a valuable asset to other applications as well. 
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